## Relevant offers

You can't always solve a mathematical problem by reducing it to something you've already solved. Sometimes, you need to invent an entirely new field of mathematics.

Last month, Shinichi Mochizuki of Kyoto University in Japan announced that a new field he's been developing for several years - which he calls Inter-universal Teichmüller theory - has proved a famous conjecture in number theory known as the "abc conjecture".

But the abc conjecture is only the beginning: If Mochizuki's theory proves correct, it will settle a raft of open problems in number theory and other branches of math.

The conjecture grows out of a seemingly trivial equation: a + b = c.

Unlike the equation a^{2} + b^{2} = c^{2}, which requires some algebraic finesse to produce solutions (not to mention its famously unsolvable cousin a^{n} + b^{n} = c^{n} with exponent n greater than two), the equation a + b = c essentially solves itself: Just pick two numbers a and b, add them together, and voila.

But when you bring in prime numbers, things get interesting.

In the mid 1980s, mathematicians David Masser of the University of Basel in Switzerland and Joseph Oesterle of Pierre and Marie Curie University in Paris observed that when a and b are divisible by small primes raised to large powers - numbers such as a = 210 and b = 34 - their sum c tends to factor into large primes to small powers. (In this example, 1024 + 81 = 1105 = 5 x 13 x 17)

The abc conjecture describes this connection in precise mathematical language, highlighting how the underlying "tension" between the operations of addition and multiplication produce such lopsided equations: many small primes on one side, a few relatively large primes on the other.

The excitement over Mochizuki's potential proof is comparable to the frisson that greeted the announcement by Grigory Perelman in 2002 that he had proved the Poincare conjecture, and by Andrew Wiles in 1993 that he had proved Fermat's Last Theorem.

But those proofs, although extremely complicated, were based on techniques that were broadly familiar to experts in the field.

As a result, researchers could "helicopter in" on portions of the proofs to check their correctness.

Mochizuki, in contrast, has developed an entirely new theory - which will make it tougher for other mathematicians to scrutinize.

"As with Perelman or Wiles, this is a first-class mathematician with a very strong reputation in the subject, who has been working on this important problem for many years, so the claim is certainly being taken very seriously," writes mathematician Terence Tao of the University of California, Los Angeles, in an email.

"But it is likely to take quite some time to evaluate the work properly, more so than with either Perelman or Wiles."

Mochizuki's proof, Tao said, was built on decades of work in an extremely difficult area of mathematics known as anabelian geometry, which very few people in the world are actively working on.

Launched in the 1980s, anabelian geometry seeks to ground mathematics in certain fundamental concepts - even more fundamental than the set theory mathematicians explored for that purpose in the 19th and 20th centuries.

Mochizuki's Inter-universal Teichmüller theory is his own take on this reconceptualisation.

Given that his description of the theory - the last installment of which came out in August - spans four dense papers totaling about 500 pages, it will probably take other mathematicians months of study to understand the theory, let alone evaluate it or think about what other mathematical problems it might lay to rest.

"His work probes the very core of mathematical language, such as what we might really mean by a number or a geometric figure, and how they might be interpreted in a manner quite different from usual conventions," writes Minhyong Kim of the University of Oxford in the United Kingdom in an email.

Kim, who is one of the world's few experts in anabelian geometry, admits even he has his work cut out for him in mastering Mochizuki's new techniques.

"There is no one but the author who is familiar with all these things," he writes.

"I can't even give an expert summary of the proof because I don't understand it."

**SCIENCE NOW**

## Sponsored links

Prehistoric shake-up over feathered dinosaurs

Scarlett Johansson uses all of her brain - and so do you

Dogs feel the furry fury: study

Don't expect me to tell the truth when I'm tired

Elephants have the most discerning nose of all

The world is on a record breaking hot streak

Scientists in race to beat superbugs

Developing a better female condoms

Top AIDs scientists among those killed on MH17

To change attitudes, don't argue - agree, extremely

The hole at the end of the earth

Four-winged dinosaur ... that looked like turkey

Judge: Don't lead your son astray

Recalling airline jet's downing in Ukraine

Apology for Gigatown anti-Muslim rant

Flying? Blood clots still a bigger risk

Top five reader comments of the day

Gisele goes makeup free in new campaign

How to turn a home into an investment

Carlos Spencer hits out at South Africa rugby style

Revealed: The dogs Kiwis love most

High-flying Kiwi to head US Walmart

Air Algerie flight crashes in eastern Mali

Queen photobombs Australian athlete's selfie

MH17 victim's parents hold hope she's alive

NZ sprint team scorch Glasgow track for gold

Breaststroker fished from Games triathlon race

Australian trapped in Lebanon on adultery charges

Best & worst dressed celebrities

What will be the main motivation for humanity's future space endeavours?

Related story: (See story)